

Study	Kit	Measured	TH01	VWA	D18551					
Greenspoon et al. (2004)	PP16 BIO	mean + 3SD	5	14	13					
Krenke et al. (2002)	PP16	mean + 1SD	3	10	9					
Moretti et al. (2001)	Pro+/CoFiler	mean + 3SD	15.9	11.7	13.9					
Mulero et al. (2008)	MiniFiler	max %	-	-	17.3					
Hill et al. (2010)	PP ESX	mean + 3SD	4.2	14.6	14.6					
User Manual	Identifiler	max%	5.1	12.6	17					
User Manual	IDfiler Direct	mean + 3SD	4.7	11.9	12.8					
User Manual	IDfiler Plus	mean + 3SD	4	12.4	13.6					

GUIDELINES Interpretation of DNA Typing Results 3.1.1.1. In general, the empirical criteria are based on qualitative and/or quantitative characteristics of peaks. As an example, dye artifacts and spikes may be distinguished from allelic peaks based on morphology and/or reproducibility. *Stutter and non-template dependent nucleotide addition peaks may be characterized based on size relative to an allelic peak and amplitude.*

PROTOCOLS

Developing Stutter Filter Values

- Samples Ideally at least 5 observations of each stutter product per locus from relevant populations (e.g. longer repeats in FGA alleles are observed mostly among African Americans).
- Use typical DNA input quantities (0.5 2.0ng), but may want to assess stutter at lower levels (e.g. <150pg). Excessive DNA (5-10ng) can skew your average percentages.
- Now what??

PROTOCOLS										
TPOX – [AATG] _N										
Stutter										
Locus Allele Size	# Median MADe									
TPOX 8 265.2	86 2.1 0.5									
9 269.2	21 2.9 0.4									
11 277.2	75 3.6 0.4									
12 281.2	14 4.3 0.4									
Avg	196 3.3 0.4									
SD	0.9									
MADe – Median										
Mutation Rate: 0.01%	Deviation									

PRO	TOCOLS									
D3S1358 – TCTA[TCTG] _N [TCTA] _N										
				Stutter						
	Locus	Allele	Size	#	Median	MADe]			
	D3S1358	14	115.2	26	7.0	0.9				
		15	119.4	66	8.1	0.7				
		16	123.5	47	9.1	0.9				
		17	127.7	47	9.8	(1.1	۲			
		18	131.9	41	10.0	3.4	V I			
			Avg	227	8.8	1.7				
			SD		1.3					

Interpretation of Potential Stutter Peaks in a Mixed Sample

UIDELINES

 3.5.8.1. For mixtures in which minor contributors are determined to be present, a peak in stutter position (generally n-4) may be determined to be 1) a stutter peak, 2) an allelic peak, or 3) indistinguishable as being either an allelic or stutter peak.

Interpretation of Potential Stutter Peaks in a Mixed Sample 3.5.8.2. Generally, when the height of a peak in the stutter position exceeds the laboratory's

the stutter position exceeds the laboratory's stutter expectation for a given locus, that peak is consistent with being of allelic origin and should be designated as an allele.

UIDELINES

Interpretation of Potential Stutter Peaks in a Mixed Sample

• 3.5.8.3. If a peak *is at or below* this expectation, it is generally designated as a stutter peak. However, it should also be considered as a possible allelic peak, particularly if the peak height of the potential stutter peak(s) *is consistent with (or greater than)* the heights observed for any allelic peaks that are conclusively attributed (i.e., peaks in non-stutter positions) to the minor contributor(s).

Summary

- Stutter can vary across profiles, loci, or alleles.
- Stutter becomes especially problematic for mixtures when samples are at low [DNA] levels.
- Labs should decide when is it appropriate to turn off stutter filters, especially when the minor component alleles are nearly the same height as stutter peaks.

Acknowledgments

- NIJ Funding to our NIST Group through NIST OLES interagency agreement 2008-DN-R-121
- Dave Duewer and Becky Hill for stutter data.

michael.coble@nist.gov 301-975-4330